CSE 4125: Distributed Database Systems Chapter – 6

Optimization of Access Strategies. (part – A)

Outline

- Query optimization
- Problems in query optimization

Query Optimization*

- Permutation of the ordering of operations within a query can provide many equivalent **strategies** to execute it.
- Finding an "**optimal**" ordering of operations for a given query is important.
 - Done by query optimization layer(or optimizer for short).

Challenges in Query Optimization

- Materialization
 - Data (physical images) on which the query is executed.
- Order of execution

- i.e. good sequence of join, semi-join, union etc.

Method of execution

– i.e. sequentially/ parallel, clustering the operations etc.

Objective of Query Optimization*

The selection of the optimal strategy consists-

- *a search space:* the set of alternative execution plans that represent the input query.
- *a cost model:* predicts the cost of a given execution plan.
- *a search strategy:* explores the search space and selects the best plan, using the cost model.

Objective of Query Optimization* (contd.)

Cost model needs to measure -

 Execution cost: weighted combination of I/O, CPU, and communication costs.

2. Fragment statistics (Database profiles):

- Estimating the amount of data in the fragments.
- Estimating the cardinalities of results of relational operations.

Performance Measurement

• The selection of the optimal strategy is made by measuring their expected performances.

In centralized DB,

- Number of I/O operations
- Usage of CPU

Performance Measurement (contd.)

• The selection of the optimal strategy is made by measuring their expected performances.

• In DDB,

- Number of I/O operations
- Usage of CPU
- Data transmission requirements [dominant]

Data Transmission

Data transmission requirement can be evaluated by –

• Transmission cost

- i.e. cost to initiate a transmission, routing cost etc.

• Transmission delay

– i.e. elapse time between activation and completion of an app.

Data Transmission (contd.)

Data transmission requirement can be evaluated by –

Transmission cost

TC (x) = $C_0 + x * C_1$

Transmission delay
TD (x) = D₀ + x * D₁

Data Transmission (contd.)

Data transmission requirement can be evaluated by –

- Transmission cost TC (x) = $C_0 + x * C_1$
- Transmission delay TD (x) = $D_0 + x * D_1$

x = Transmitted data

C's and D's are system dependent constants.

 C_0 = initialization fixed cost C_1 = network wide unit cost D_0 = connection initialization fixed time D_1 = network wide unit transfer rate

Data Transmission (contd.)

Data transmission requirement can be evaluated by (more detailed characterization)

- Transmission cost TC (x) = $C_0^{ij} + x * C_1^{ij}$
- Transmission delay TD (x) = $D_0^{ij} + x * D_1^{ij}$

i and *j* denote source and destination respectively.

Database Profiles

What are Database Profiles*?

- Statistical information of the database.
- Necessity:
 - To perform sequence of operations, relations must be transmitted over the network.
 - It is important to estimate the size of the results to minimize the data transfers.
 - We need the statistical information (database profile) to estimate.

Information in Database Profiles

For a relation $R(A_1, A_2, ..., A_n)$ with fragments $R_1, R_2, ..., R_n$, the database profile contains following information.

- card (R_i): number of tuples of R_i.
- size (A_i): size or length (i.e. number of bytes) of attribute A_i.

– For simplicity, same attribute name \rightarrow same size

• **size** (**R**_i): sum of the size of all attributes of *R*_i.

Information in Database Profiles (contd.)

For a relation $R(A_1, A_2, ..., A_n)$ with fragments $R_1, R_2, ..., R_n$, the database profile contains following information.

- val (A_i [R_i]): number of distinct values appearing for attribute A_i of R_i.
- dom(A_i): domain of an attribute.
- **site** (**R**_i): allocated site of the fragment R_i.

Database Profiles (example)

card (DEPT₁) = 10 site(DEPT₁) = 2

	deptnum	name	area	mgrnum
size	2	15	1	7
val	10	10	2	10

Q: size $(R_i) = ?$

Estimating profiles of results of algebraic operations

What to Estimate?

- Estimating the profiles of results of algebraic operations.
- This information is useful for optimization (previous slides).
- Assume, *R* and *S* are input fragments and *T* is the result.
 - We will mostly estimate card(T) and size(T).
 - Example: If card(R) and card(S) is given, can we estimate card(T) for T = R UN S?

Union T = R UN S

card (T) ? card (R) ? card (S)

size (T) ? size (R) ? size (S)

Selection $T = SL_{A = value} R$

card (T) = ρ * card (R) Here ρ is selectivity.

$$\rho = \frac{1}{val(A[R])}$$

$$\left(\mathsf{T} = \mathsf{SL}_{A = value} \mathbf{R}\right)$$

card (T) = ρ * card (R) example Here ρ is selectivity. R A1 A2 $\mathbf{T} = \mathsf{SL}_{A1 = B} \mathbf{R}$ Α Ε $=\frac{1}{val\left(A[R]\right)}$ $\rho = ?$ F ρ В card(T) = ?С G D Н

$$\left(\mathsf{T} = \mathsf{SL}_{A = value} \mathbf{R}\right)$$

card (T) = ρ * card (R) example Here ρ is selectivity. R A1 A2 $\mathbf{T} = \mathsf{SL}_{A1 = B} \mathbf{R}$ Α Ε $=\frac{1}{val\left(A[R]\right)}$ $\rho = ?$ F ρ В card(T) = ?G Α В Н

$$\left(\mathsf{T} = \mathsf{SL}_{A = value} \mathbf{R}\right)$$

card (T) = ρ * card (R) example Here ρ is selectivity. R A1 A2 $\mathbf{T} = \mathsf{SL}_{A1 = B} \mathbf{R}$ Α Ε $=\frac{1}{val\left(A[R]\right)}$ $\rho = ?$ F ρ В card(T) = ?С G В Н

$$\left(\mathsf{T} = \mathsf{SL}_{A = value} \mathbf{R}\right)$$

card (T) = ρ * card (R) example Here ρ is selectivity. R A1 A2 $\mathbf{T} = \mathsf{SL}_{A1 = B} \mathbf{R}$ Α Ε $=\frac{1}{val\left(A[R]\right)}$ $\rho = ?$ F ρ Α card(T) = ?G Α В Н

$$\left(\mathsf{T} = \mathsf{SL}_{A = value} \mathbf{R}\right)$$

card (T) = ρ * card (R) Here ρ is selectivity.

$$\rho = \frac{1}{val(A[R])}$$

Assuming, values are homogeneously distributed

exampleR $T = SL_{A1 = B} R$ $A1 \quad A2$ $\rho = ?$ $A \quad E$ card(T) = ? $A \quad G$ $B \quad H$

According to Selinger et al. (1979),

• For *A > value*,

$$o = \frac{\max{(A)} - value}{\max{(A)} - \min{(A)}}$$

• For *A* < *value*,

$$\rho = \frac{value - \min(A)}{\max(A) - \min(A)}$$

size (T) = ?

Projection

card (T) = ?

Projection (contd.)

$$\left(\boldsymbol{T} = PJ_{A}\boldsymbol{R} \right)$$

card (T) = val (A[R])

Projection (contd.)

size (T) ? size (R)

Cartesian Product

card (T) = card (R) × card (S)

Join

$$\left(T = R JN_{R.A = S.B} S \right)$$

card (T) = ?

Join (contd.)

$$\left(T = R JN_{R.A = S.B} S \right)$$

card (T) = selectivity * card(R CP S) = ρ * (card(R) × card (S))

Join (contd.)

$$\left(T = R JN_{R.A = S.B} S \right)$$

card (T) = selectivity * card(R CP S) = ρ * (card(R) × card (S)) = $\frac{1}{val(A[R])}$ × card(R) × card (S) = $\frac{card(R) \times card(S)}{val(A[R])}$ = $\frac{card(R) \times card(S)}{val(B[S])}$

Semi-Join

$$\left(T = R S J_{R.A = S.B} S \right)$$

card (T) = ?

Semi-Join (contd.)

$$\left(T = R S J_{R.A = S.B} S \right)$$

card (T) =
$$\rho$$
 * card(R)

Optimization Graph

Optimization Graph

- A model to describe query optimization.
- Convenient than operator tree.
- Include only *critical* operations (critical for data transmission)

Optimization Graph (contd.)

- Unary operations are *not critical*.
 - Effect only by reducing operands and do not need data transmission.
 - These operations are collected by a program called *fragment reducer*.

Optimization Graph (contd.)

- Unary operations are *not critical*.
 - Effect only by reducing operands and do not need data transmission.
 - These operations are collected by a program called fragment reducer.
- Binary operations are *critical*.
 - When operands are not in the same site, they need data transmission.
 - CP, DF and SJ are not considered as they are rare. JN and UN are kept which gives us a graph called **optimization** graph.

Optimization Graph (example)

card (SUPPLY₁) = 30000 site(SUPPLY₁) = 1

	snum	pnum	deptnum	quan
size	6	7	2	10
val	1800	1000	20	500

card $(DEPT_1) = 10$ site $(DEPT_1) = 2$

	deptnum	name	area	mgrnum
size	2	15	1	7
val	10	10	2	10

Optimization Graph (example)

Fragment Reducer Program:

Before binary operation:

- Reducer for SUPPLY₁: PJ SNUM, DEPTNUM
- Reducer for DEPT₁: PJ DEPTNUM SL AREA="Dhaka"

After binary operation:

Reducer for Result: PJ _{SNUM}

Optimization Graph (example)

Optimization Graph:

• Reduced profiles:

	snum	deptnum			deptnum
size	6	2		size	2
val	1800	20		val	10
SUPPLY ₁			-		

Additional Reading

- Significance of the *detailed characterization* of the formulas of TC(x) and TD(x).
- Advantages of optimization graph.
- Representing UN's in optimization graph.
- Assumptions for distributed query optimization.

Practice Problems/ Questions