CSE 4125: Distributed Database Systems

 Chapter-6

 Chapter-6}

Optimization of Access Strategies.
 (part - A)

Outline

- Query optimization
- Problems in query optimization

Query Optimization*

- Permutation of the ordering of operations within a query can provide many equivalent strategies to execute it.
- Finding an "optimal" ordering of operations for a given query is important.
- Done by query optimization layer(or optimizer for short).

Challenges in Query Optimization

- Materialization
- Data (physical images) on which the query is executed.
- Order of execution
- i.e. good sequence of join, semi-join, union etc.
- Method of execution
- i.e. sequentially/ parallel, clustering the operations etc.

Objective of Query Optimization*

The selection of the optimal strategy consists-

- a search space: the set of alternative execution plans that represent the input query.
- a cost model: predicts the cost of a given execution plan.
- a search strategy: explores the search space and selects the best plan, using the cost model.

Objective of Query Optimization* (contd.)

Cost model needs to measure -

1. Execution cost: weighted combination of I/O, CPU, and communication costs.
2. Fragment statistics (Database profiles):

- Estimating the amount of data in the fragments.
- Estimating the cardinalities of results of relational operations.

Performance Measurement

- The selection of the optimal strategy is made by measuring their expected performances.
- In centralized DB,
- Number of I/O operations
- Usage of CPU

Performance Measurement (contd.)

- The selection of the optimal strategy is made by measuring their expected performances.
- In DDB,
- Number of I/O operations
- Usage of CPU
- Data transmission requirements [dominant]

Data Transmission

Data transmission requirement can be evaluated by -

- Transmission cost
- i.e. cost to initiate a transmission, routing cost etc.
- Transmission delay
- i.e. elapse time between activation and completion of an app.

Data Transmission (contd.)

Data transmission requirement can be evaluated by -

- Transmission cost

$$
\mathrm{TC}(\mathrm{x})=\mathrm{C}_{0}+\mathrm{x} * \mathrm{C}_{1}
$$

- Transmission delay

$$
\mathrm{TD}(\mathrm{x})=\mathrm{D}_{0}+\mathrm{x}^{*} \mathrm{D}_{1}
$$

Data Transmission (contd.)

Data transmission requirement can be evaluated by -

- Transmission cost $\mathrm{TC}(\mathrm{x})=\mathrm{C}_{0}+\mathrm{x} * \mathrm{C}_{1}$
- Transmission delay
$T D(x)=D_{0}+x^{*} D_{1}$
$x=$ Transmitted data

C's and D's are system dependent constants.
$\mathrm{C}_{0}=$ initialization fixed cost
$\mathrm{C}_{1}=$ network wide unit cost
$D_{0}=$ connection initialization fixed time
$D_{1}=$ network wide unit transfer rate

Data Transmission (contd.)

Data transmission requirement can be evaluated by (more detailed characterization)

- Transmission cost

$$
\mathrm{TC}(\mathrm{x})=\mathrm{C}_{0}{ }^{i j}+\mathrm{x}^{*} \mathrm{C}_{1}{ }^{i j}
$$

- Transmission delay
$\mathrm{TD}(\mathrm{x})=\mathrm{D}_{0}{ }^{i j}+\mathrm{x} * \mathrm{D}_{1}{ }^{i j}$
i and j denote source and destination respectively.

Database Profiles

What are Database Profiles*?

- Statistical information of the database.
- Necessity:
- To perform sequence of operations, relations must be transmitted over the network.
- It is important to estimate the size of the results to minimize the data transfers.
- We need the statistical information (database profile) to estimate.

Information in Database Profiles

For a relation $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ with fragments R_{1}, R_{2}, \ldots, R_{r} the database profile contains following information.

- card $\left(\mathbf{R}_{\mathrm{i}}\right)$: number of tuples of R_{i}.
- size $\left(A_{i}\right)$: size or length (i.e. number of bytes) of attribute A_{i}.
- For simplicity, same attribute name \rightarrow same size
- size $\left(\mathbf{R}_{\mathrm{i}}\right)$: sum of the size of all attributes of R_{i}.

Information in Database Profiles (contd.)

For a relation $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ with fragments R_{1}, R_{2}, \ldots, R_{r} the database profile contains following information.

- $\operatorname{val}\left(\mathbf{A}_{\mathbf{i}}\left[\mathbf{R}_{\mathbf{i}}\right]\right)$: number of distinct values appearing for attribute A_{i} of R_{i}.
- $\operatorname{dom}\left(A_{i}\right):$ domain of an attribute.
- site $\left(\mathrm{R}_{\mathrm{i}}\right)$: allocated site of the fragment R_{i}.

Database Profiles (example)

$$
\begin{aligned}
& \operatorname{card}\left(\mathrm{DEPT}_{1}\right)=10 \\
& \text { site }\left(\mathrm{DEPT}_{1}\right)=2
\end{aligned}
$$

	deptnum	name	area	mgrnum
size	2	15	1	7
val	10	10	2	10

$$
\mathrm{Q}: \operatorname{size}\left(\mathrm{R}_{\mathrm{i}}\right)=\text { ? }
$$

Estimating profiles of results of algebraic operations

What to Estimate?

- Estimating the profiles of results of algebraic operations.
- This information is useful for optimization (previous slides).
- Assume, R and S are input fragments and T is the result.
- We will mostly estimate card(T) and size(T).
- Example: If $\operatorname{card}(R)$ and $\operatorname{card}(S)$ is given, can we estimate $\operatorname{card}(T)$ for $T=R$ UN S ?

Union

$T=R$ UN S

$\operatorname{card}(T)$? $\operatorname{card}(R)$? card (S)
size (T) ? size (R) ? size (S)

Selection

$$
\mathrm{T}=\mathrm{SL}_{A=\text { value }} R
$$

$\operatorname{card}(\mathrm{T})=\rho^{*} \operatorname{card}(\mathrm{R})$
Here ρ is selectivity.

$$
\rho=\frac{1}{\operatorname{val}(A[R])}
$$

Selection (contd.)

$$
\mathrm{T}=\mathrm{SL}_{A=\text { value }} R
$$

$\operatorname{card}(\mathrm{T})=\rho^{*} \operatorname{card}(\mathrm{R})$
Here ρ is selectivity.

$$
\rho=\frac{1}{\operatorname{val}(A[R])}
$$

example $\quad \boldsymbol{R}$

$$
\begin{aligned}
& \mathbf{T}=S L_{A 1=B} \mathbf{R} \\
& \rho=? \\
& \operatorname{card}(\mathrm{~T})=?
\end{aligned}
$$

Selection (contd.)

$$
\mathrm{T}=\mathrm{SL}_{A=\text { value }} R
$$

$\operatorname{card}(\mathrm{T})=\rho^{*} \operatorname{card}(\mathrm{R})$
Here ρ is selectivity.

$$
\rho=\frac{1}{\operatorname{val}(A[R])}
$$

example $\quad \boldsymbol{R}$

$$
\begin{aligned}
& \mathbf{T}=S L_{A 1=B} \mathbf{R} \\
& \rho=? \\
& \operatorname{card}(\mathrm{~T})=?
\end{aligned}
$$

Selection (contd.)

$$
\mathrm{T}=\mathrm{SL}_{A=\text { value }} R
$$

$\operatorname{card}(\mathrm{T})=\rho^{*} \operatorname{card}(\mathrm{R})$
Here ρ is selectivity.

$$
\rho=\frac{1}{\operatorname{val}(A[R])}
$$

Selection (contd.)

$$
\mathrm{T}=\mathrm{SL}_{A=\text { value }} R
$$

$\operatorname{card}(\mathrm{T})=\rho^{*} \operatorname{card}(\mathrm{R})$
Here ρ is selectivity.

$$
\rho=\frac{1}{\operatorname{val}(A[R])}
$$

example $\quad \boldsymbol{R}$

$$
\begin{aligned}
& \mathbf{T}=S L_{A 1=B} \mathbf{R} \\
& \rho=? \\
& \operatorname{card}(\mathrm{~T})=?
\end{aligned}
$$

Selection (contd.)

$$
\mathrm{T}=\mathrm{SL}_{A=\text { value }} R
$$

$\operatorname{card}(\mathrm{T})=\rho^{*} \operatorname{card}(\mathrm{R})$ Here ρ is selectivity.

$$
\rho=\frac{1}{\operatorname{val}(A[R])}
$$

Assuming, values are
homogeneously distributed

$$
\begin{aligned}
& \text { example } \\
& \mathbf{T}=\mathrm{SL}_{A 1=B} \mathbf{R} \\
& \rho=\text { ? } \\
& \operatorname{card}(T)=\text { ? }
\end{aligned}
$$

Selection (contd.)

According to Selinger et al. (1979),

- For A > value,

$$
\rho=\frac{\max (A)-\text { value }}{\max (A)-\min (A)}
$$

- For $A<v a l u e$,

$$
\rho=\frac{\text { value }-\min (A)}{\max (A)-\min (A)}
$$

Selection (contd.)

$$
\operatorname{size}(T)=?
$$

Projection

$T=P \int_{A} P$

$\operatorname{card}(T)=$?

example	
\boldsymbol{R}	
A1	A2
A	E
B	F
C	G
B	H

Projection (contd.)

$$
\boldsymbol{T}=\mathrm{PJ}_{\mathrm{A}} \boldsymbol{R}
$$

$\operatorname{card}(T)=\operatorname{val}(A[R])$

Projection (contd.)

$$
T=P J_{A} P
$$

size (T) ? \quad size (R)

Cartesian Product

$T=R \mathrm{CP} S$

$\operatorname{card}(T)=\operatorname{card}(R) \times \operatorname{card}(S)$

Join

$T=R \mathrm{JN}_{\text {R.A }}=\mathrm{S} . \mathrm{B} S$

$\operatorname{card}(T)=$?

Join (contd.)

$T=R J N_{\text {R.A }}=\mathrm{S} . \mathrm{B} S$

$\operatorname{card}(T)=$ selectivity $* \operatorname{card}(R C P S)$
$=\rho^{*}(\operatorname{card}(R) \times \operatorname{card}(S))$

Join (contd.)

$$
T=R \mathrm{JN}_{\mathrm{R} . \mathrm{A}}=\mathrm{S.B} \mathrm{~S}
$$

$\operatorname{card}(T)=$ selectivity * $\operatorname{card}($ R CP S)

$$
=\rho^{*}(\operatorname{card}(R) \times \operatorname{card}(S))
$$

$$
=\frac{1}{\operatorname{val}(\mathrm{~A}[\mathrm{R}])} \times \operatorname{card}(\mathrm{R}) \times \operatorname{card}(\mathrm{S})
$$

$$
=\frac{\operatorname{card}(\mathrm{R}) \times \operatorname{card}(\mathrm{S})}{\operatorname{val}(\mathrm{A}[\mathrm{R}])}=\frac{\operatorname{card}(\mathrm{R}) \times \operatorname{card}(\mathrm{S})}{\operatorname{val}(\mathrm{B}[\mathrm{~S}])}
$$

Semi-Join

$T=R S J_{R . A}=S . B \quad S$

$\operatorname{card}(T)=$?

Semi-Join (contd.)

$T=R S J$ R.A $=$ S.B S

$\operatorname{card}(T)=\rho * \operatorname{card}(R)$

According to Hevner et al. (1979),

$$
\rho=\frac{\operatorname{val}(A[R])}{\operatorname{val}(\operatorname{dom}(A))}
$$

Optimization Graph

Optimization Graph

- A model to describe query optimization.
- Convenient than operator tree.
- Include only critical operations (critical for data transmission)

Optimization Graph (contd.)

- Unary operations are not critical.
- Effect only by reducing operands and do not need data transmission.
- These operations are collected by a program called fragment reducer.

Optimization Graph (contd.)

- Unary operations are not critical.
- Effect only by reducing operands and do not need data transmission.
- These operations are collected by a program called fragment reducer.
- Binary operations are critical.
- When operands are not in the same site, they need data transmission.
- CP, DF and SJ are not considered as they are rare. JN and UN are kept which gives us a graph called optimization graph.

Optimization Graph (example)

$$
\begin{aligned}
& \operatorname{card}\left(\text { SUPPLY }_{1}\right)=30000 \\
& \text { site }\left(\text { SUPPLY }_{1}\right)=1
\end{aligned}
$$

	snum	pnum	deptnum	quan
size	6	7	2	10
val	1800	1000	20	500

$$
\begin{aligned}
& \operatorname{card}\left(\text { DEPT }_{1}\right)=10 \\
& \text { site }\left(\text { DEPT }_{1}\right)=2
\end{aligned}
$$

	deptnum	name	area	mgrnum
size	2	15	1	7
val	10	10	2	10

Optimization Graph (example)

Fragment Reducer Program:
Before binary operation:

- Reducer for SUPPLY $_{1}$: PJ $_{\text {SNUM, DEPTNUM }}$
- Reducer for DEPT $_{1}$: $\mathrm{PJ}_{\text {DEPTNUM }} \mathrm{SL}_{\text {AREA="Dhaka" }}$

After binary operation:

- Reducer for Result: PJ ${ }_{\text {SNUM }}$

Optimization Graph (example)

Optimization Graph (example)

- Optimization Graph:

- Reduced profiles:

	snum	deptnum
size	6	2
val	1800	20
SUPPLY $_{1}$		

	deptnum
size	2
val	10
DEPT $_{1}$	

Additional Reading

- Significance of the detailed characterization of the formulas of TC(x) and TD(x).
- Advantages of optimization graph.
- Representing UN's in optimization graph.
- Assumptions for distributed query optimization.

Practice Problems/ Questions

